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The Griineisen parameter is derived in closed form in terms of the elements of the secular determinant.
The method is applied to face- and body-centered structures with nearest- and next-nearest-neighbor central
forces. Results are presented for seven elements, and comparisons are made with some commonly used

approximate methods.

INTRODUCTION

N an earlier demonstration, based on the Debye
theory, it was pointed out that the contribution of
the shear modes to the calculation of the Griineisen
parameter is significantly more important than that of
the compressional modes.! We show by a demonstration
based on the Born—-von Karmén theory that a similar
result is obtained in this case as well. The Griineisen
parameter in this case will be shown to be most heavily
dependent on the shear modulus ¢4 and its pressure
derivative.

PREVIOUS DETERMINATIONS OF ¥y

Slater? has proposed that the Griineisen parameter y
be calculated from the Debye theory of solids with the
additional assumption that Poisson’s ratio be constant.

Birch® has written the correction to be applied if

Poisson’s ratio is not constant. However, this expres-
sion, written with a term in the pressure derivative of
the bulk modulus as apparently the most dominant,
hides the fact that the shear term is, in fact, the domi-
nant one.

The Dugdale-MacDonald relation®?® is derived on the
assumption that the individual terms

l¢] lnwj

—y,= ,
dlnvlrp

the rate of change of the eigenfrequencies with volume,
are equal to one another. This assumption is not valid.
Below we amend the calculation of ¢ to take into
account the dependence of w; upon v.

The frequencies of a Bravais lattice can be found as
the roots of a cubic equation:

(@?—wr?) (WP —w2?) (w?—ws?) =0.

lL.) Knopoff and J. N. Shapiro, J. Geophys. Res. 74, 1439
(1969).

2 J. C. Slater, Phys. Rev. 57, 744 (1940).

3 F. Birch, J. Geophys. Res. 57, 227 (1952).

¢ J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 89, 832
(1953).

8§ M. H. Rice, R. G. McQueen, and J. M. Walsh, Solid State
Phys. 6, 1 (1958).

If we differentiate this expression implicitly and solve
for «, '

(o) (P—w)+ (o) (@—o)
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appears as a denominator where the w;’s are the roots.
As long as the roots are distinct, evaluation of the
resulting expression at w?’=w? gives a nonzero de-
nominator. In the case when a double root exists, such
as happens along the cube diagonal in 6 space® for a
face-centered lattice, the denominator approaches zero
and the resulting v becomes infinite.” Thus any deriva-
tion which relies on the equality of the individual
Griineisen parameters is certainly open to question.

GRUNEISEN PARAMETER FOR BORN-
VON KARMAN LATTICES

The Griineisen parameter is defined as®

he;j (k) he; (k)
v=2 (w5 - )/= i — )
where
‘ k) __ d lnwj(k) (2)
'YJ( 9 In , 3
and

E(x)=x/(e"—1),

the Einstein specific-heat function. Here k is the propa-
gation vector and j is the branch index. At sufficiently
high temperatures, all modes are fully excited and
Eq. (1) reduces to

’y=<jzi:1')’j;k)>’ 3)

where angular brackets denote averages over all direc-
tions of propagation.
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F16. 1. L(B) versus B for face-centered lattices.

In the preceding paper? we have discussed the con-
ditions under which the use of Born—von Kérmén dy-
namics, including only first- and second-neighbor central
forces, is justified. Throughout the remainder of this
paper we assume that the dynamics of the lattice can
be described by a three-by-three symmetric matrix.
The cubic equation which results from expanding the
determinant can be written symbolically in the standard
form

Y+ py+gy+r=0, 4)
where y is the eigenvalue
y=o'/od, ®)

and p, ¢, and r are homogeneous functions of order one,
two, and three, respectively, in the matrix elements,
and wo is a function of the lattice parameter and the
force constants. In a previous paper’ we have shown, by
summing over the branches first, how to compute the
moments of the frequency distribution for each value
of k in terms of the coefficients p, g, and 7. In the case
of the moment calculation, the summation over k can
be done simply to yield the positive even moments
exactly.

BORN-VON KARMAN LATTICES 3991

F16. 2. L(B) versus B for body-centered lattices.

~ Here we proceed similarly by noting that

r=—31y2Ys, (6)

the product of three roots of Eq. (4). Differentiating
Eq. (6) we find
1aln71 3 9 Inw;(k)

0 lnwo
3

T 0 Inv
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Averaging over all directions of the wave number k,
comparison with Egs. (2) and (3) yields

6lnw0 KT 19lnr
y=kr— +(-=7 ®)
oP Iy 2 \3 0P Iy

at sufficiently high temperatures. K, is the usual
isothermal bulk modulus.

Substituting for # and w, the appropriate quantities
and using Fuchs’s relations to express the force con-
stants in terms of the elastic constants for face- and
body-centered systems, we find the general expression

Ky 044 98
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TasBLE I. Comparison of thermal and theoretical
Griineisen parameters for body-centered lattices.»
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TasLE I1. Comparison of thermal and theoretical
Griineisen parameters for face-centered lattices.?

Element uL 81 YDM Ay vEq (9 v Element ur Y81 YDM Ay v Eq. (9 vin
Sodium 0.51 1.64 1.31 —0.00 1.04 1.15 Copper 1.15 2.64 2.31 —0.05 1.87 1.99
Potassium 0.29 1.80 1.47 —0.02 1.13 1.13  Silver 0.74 2.97 2.64 —0.05 2.35 2.35

Gold 0.52 3.05 2.72 —0.14 3.;2 2.96
a i Aluminum 1.15 2.45 2.12 —0.10 2.72 2.13
139%{19273;.3. from G. R. Barsch and Z. P. Chang, Phys. Status Solidi 19, Lead® 0.33 2.60 227 —012 259 269

where s;=sinf;, C=2 for fcc’s and £ for bec’s, and the
a;;’s are given by deLaunay' and are reproduced in the
Appendix. The presence of the denominator in Eq. (10)
precludes the possibility of performing the integral
(or sum) analytically as in the moment calculation.
Instead we have chosen to perform the integration
numerically using some 816 points in the irreducible
1/48th of the Brillouin zone. The results are presented
in Figs. 1 and 2. The last term in Eq. (9) is always
small; for this reason the curves of Figs. 1 and 2 are
sufficient for accurate calculations of 4.

RESULTS

In Tables I and IT we compare Griineisen’s parameter
obtained from Eq. (9) with the values computed from
the Slater and Dugdale-MacDonald models. Available
acoustic data on second- and third-order elastic con-
stants have been used. v is the thermodynamic y

Yin=KgsaV/Cp (11)

and should be equal to the average value of the re-
sult of Eq. (3) at high temperatures. The quantity
ur=howr/kpT with w;, the maximum frequency and
T=2300°K. The last term in Eq. (9) is called Ay and is
listed separately.

For the seven elements tabulated, Eq. (9) yields
significantly better values than those obtained from the
Slater method and slightly better than those of Dug-
dale and MacDonald. There is a strong correlation
between %z, and the values of Eq. (9) and yu,: Potassium
and lead have the smallest values of #; and the best
values of vy from Eq. (9), while the worst determination
is for aluminum which, together with copper, has the
largest value of #z. Thus the accuracy of Eq. (3), and

a Data source same as Table I except for Pb.

b Data on Pb from R. A, Miller and D. E. Schuele, J. Phys, Chem. Solids
30, 589 (1969); Cp used to reduce Kg to Kr taken from Handbook of
Chemistry and Physics (Chemical Rubber Publishing Co., Cleveland, Ohio,
1959), 40th ed.

hence of Eq. (9), depends on the complete excitation of
all modes, since it is only in this case that the high-
temperature approximation of Eq. (3) can be made.

When #; is not small the Griineisen parameter
defined by Eq. (1) becomes temperature dependent via
the weighting factors, and the equality of vy, from Eq.
(11) with the theoretical value no longer holds.

With the exception of aluminum, for which #;, is not
small, we conclude that the determination of the
Griineisen parameter by means of Eq. (9) is superior to
that by either the Slater or Dugdale-MacDonald
relations.
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APPENDIX: MATRIX ELEMENTS FOR FACE-
AND BODY-CENTERED LATTICES

bcce:
A= 1—616263+3a2si2/20[1 N
Qij=SiSiCk, 17""‘-‘],
fec:
aii=2—c;(c;i+ o)+ 2es2 a1,
@ij=S$iS;, 17f;
where
Si= sinﬁi,
;= COSBi.



